CONVAS INSTITUTE OF LOCATION

17CS/1536

Third Semester B.E. Degree Examination, July/August 2022 Discrete Mathematical Structures

CBCS SCHEME

Time: 3 hrs.

USN

Max Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

		<u>Module-1</u>	
1	a.		(05 Marks)
	b.	Test the validity of the following argument:	
		If Ravi goes out with friends, he will not study	
		If Ravi does not study, his father becomes angry	
		His father is not angry	
		Ravi has not gone out with friends	(05 Marks)
	c.	5	all nonzero
		integers.	
		(i) $\exists x \exists y [xy=2]$ (ii) $\exists x \forall y [xy=2]$ (iii) $\forall x \exists y (xy=2)$	
	d	(iv) $\exists x \exists y ((3x - y = 8) \land (2x - y) = 7))$ (v) $\exists x \exists y ((4x + 2y = 3) \land (x - y = 1))$ Give : (i) Direct proof (ii) Proof by contradiction for the following statement.	(05 Marks)
	u.	If n is an odd integer, then $(n + 9)$ is an even integer.	(05 Marks)
		in in is an odd integer, men (in + 7) is an even integer.	(us starka)
		OR	
2	a.	Prove that $((A \land B) \rightarrow C) \Leftrightarrow (A \rightarrow (B \rightarrow C))$ is a tautology.	(05 Marks)
	b.	, , , , , , , , , , , , , , , , , , , ,	
		$p \rightarrow (q \wedge r)$	
		$r \rightarrow s$	(05 Marks)
		\neg (q \land s)	(05 Warks)
		p	
	c.	Define converse, inverse, contrapositive of implication $p \rightarrow q$. Give example for c	ach.
			(05 Marks)
	d.	Find whether following argument is valid. Universe is sit of all triangles.	
		If a traingle has 2 equal sides, it is isoceles	
		If a triangle is isoceles, it has 2 equal angles	
		A certain traingle ABC does not have 2 equal angles	
		Triangle ABC does not have 2 equal sides	(05 Marks)
		Modulo 2	
3	9	<u>Module-2</u> Prove by mathematical induction that	
5	u.		
		$(1 \times 2) + (2 \times 3) + (3 \times 4) + \dots + (n \times (n+1)) = \frac{1}{3}n(n+1)(n+2)$ where $n \ge 1$	(05 Marks)
	b.	A sequence $\{a_n\}$ is defined $a_1 = 4$, $a_n = a_{n-1} + n$ for $n \ge 2$. Find a_n in explicit form.	(05 Marks)
	c.	How many arrangements are there for all letters in the word SOCIOLOGICA	L. In how
		many of the arrangements (i) A and G are adjacent (ii) All vowels are adjacent.	
	d.		that :
		(i) no container is left empty (ii) The 4 th container gets an odd number of balls	(05 Muelce)

(ii) The 4th container gets an odd number of balls

(05 Marks)

1 of 3

- Find the number of 3-digit even numbers with no repeated digits. (i) a.
 - In how many ways can we distribute 7 apples and 6 oranges among 4 children so that (ii) (05 Marks) each child gets atleast one apple.
- Find the coefficient of b.

4

- x^9y^3 in the expansion of $(2x 3y)^{12}$ (i)
- xyz^2 in the expansion of $(2x y z)^4$ (ii)
- A certain question paper contains 3 parts A, B, C, with 4 questions in part A, 5 questions in C. part B and 6 questions in part C. It is required to answer 7 questions selecting at least 2 questions from each part. In how many different ways can a student select his 7 questions (05 Marks) for answering?
- d. Find the number of arrangements of the letters in the word TALLAHASSEE. How many of (05 Marks) these arrangements have no adjacent A's?

Module-3

a. Let f: R \rightarrow R be defined by $f(x) = \begin{cases} 3x-5, & \text{for } x > 0 \\ -3x+1, & \text{for } x \le 0 \end{cases}$. Determine $f^{-1}(0), f^{-1}(1),$ 5 column column column

$$t^{-1}(-1), t^{-1}(-3), t^{-1}(-6).$$

- b. Let $A = \{a, b, c, d\}, B = \{1, 2, 3, 4, 5, 6\},\$
 - How many functions are there from A to B? How many of these are one-one and how many are onto?
 - How many functions are there from B to A? How many of these are one-to-one and (ii)(05 Marks) how many are onto?
- c. Let $A = \{1, 2, 3, 4, 6, 8, 12\}$. On A, define a relation R by x R y if and only if x divides y. Write ordered pairs of R and show that R is a partial ordering relation. Draw Hasse diagram (05 Marks) of R.
- d. Define Reflexive, symmetric, transitive, antisymmetric, equivalence relation. (05 Marks)

OR

- a. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 5\}$. Determine: 6
 - (i) $|A \times B|$
 - (ii) Number of relations from A to B
 - (iii) Number of relations from A to B that contain (1, 2) and (1, 5)
 - (iv) Number of relations from A to B that contain exactly 5 ordered pairs
 - (v) Number of binary relations on A that contain at least 7 ordered pairs. (05 Marks)
 - b. Justify using Pigenhole principle:
 - Any subset of size 6 from the set $A = \{1, 2, 3, \dots, 9\}$ must contain at least 2 elements (i) whose sum is 10.
 - Wilma operates a computer with a magnetic tape drive. One day she is given a tape (ii)that contains 500000 words of 4 or fewer lowercase letters. Can it be that all 500000 (05 Marks) words are all distinct?

c. Let f, g, h functions from z to z defined by f(x) = x - 1, g(x) = 3x,

 $h(x) = \begin{cases} 0, & \text{if } x \text{ is even} \end{cases}$

Determine $(f \circ (g \circ h))(x)$ and $((f \circ g) \circ h)(x)$.

d. On the set z, a relation R is defined by a R b if and only if $a^2 = b^2$. Verify that R is an equivalence relation. Determine the partition induced by R. (05 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

univas Institute of Technolog Library, Mangalore

17CS/IS36

Module-4

- a. Find the number integers between 1 and 10,000 inclusive, which are divisible by none of 7 5, 6, or 8. (08 Marks)
 - b. What is derangement? Find the number of derangements of 1, 2, 3, 4 and list these (06 Marks) derangements.
 - Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$. (06 Marks) C.

OR

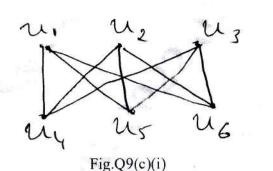
- Find the number of non-negative integer solutions of the equation $x_1 + x_2 + x_3 + x_4 = 18$ 8 a. under the condition $x_i \le 7$, for i = 1, 2, 3, 4. (08 Marks)
 - b. A person invests Rs.1,00,000 at 12% interest compounded annually:
 - (i) Find the amount at the end of 1^{st} , 2^{nd} , 3^{rd} year.
 - (ii) Write the general explicit formula
 - (iii) How long will it take to double the investment?
 - c. Solve the recurrence relation $a_n = 3a_{n-1} 2a_{n-2}$ for $n \ge 2$, given that $a_1 = 5$ and $a_2 3$.

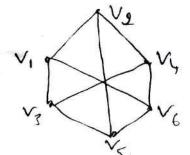
(06 Marks)

(04 Marks)

Module-5

- Define the following with an example for each: 9 a.
 - (iii) Regular graph (i) Connected graph (ii) Complete graph
 - (v) Complete bipartite graph (vi) Euler graph (06 Marks) (iv) Bipartite graph
 - b. Determine order |V| of G = (V, E) if
 - G is a cubic graph with 9 edges (i)
 - G is Regular with 15 edges (ii)
 - (iii) G has 10 edges with 2 vertices of degree 4 and all other vertices of degree 3. (04 Marks)
 - c. Define isomorphism. Show that following graphs, shown in Fig.Q9(c)(i) and (ii) are isomorphic.





d.

Fig.Q9(c)(ii) (04 Marks) Explain about Konigsberg Bridge Problem and about its solution. (06 Marks)

OR

- Define walk, trail, path, circuit, cycle, degree of a vertex in a graph, with an example for 10 a. (06 Marks) each.
 - b. Prove that in every graph, the number of vertices of odd degree is even. (04 Marks)
 - c. Prove that in every tree T = (V, E), |V| = |E| + 1.
 - d. Construct an optimal tree for a given set of weights, {4, 15, 25, 5, 8, 16}. Hence lind weight (06 Marks) of the optimal tree.

(06 Marks)